Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance.
نویسندگان
چکیده
Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3 °C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25 °C (R25 ) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10 of treatment and control leaves exhibited similarly high values (range 2.5-3.0) without evidence of acclimation. The decrease in R25 was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24°S-24°N) from 2000 to 2100 using a dynamic global vegetation model (LM3VN) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no-acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle.
منابع مشابه
Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests
Mature tropical forests sequester large quantities of atmospheric CO2, which they store as plant biomass. These forests are changing however, including an increase in liana abundance and biomass over recent decades in Neotropical forests. We ask here how this increase in lianas might impact the tropical forest carbon cycle and their capacity for carbon storage and sequestration. Lianas reduce t...
متن کاملTrait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming
There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of...
متن کاملFoliar respiration and its temperature sensitivity in trees and lianas: in situ measurements in the upper canopy of a tropical forest.
Leaf dark respiration (R) and its temperature sensitivity are essential for efforts to model carbon fluxes in tropical forests under current and future temperature regimes, but insufficient data exist to generalize patterns of R in species-rich tropical forests. Here, we tested the hypothesis that R and its temperature sensitivity (expressed as Q10, the proportional increase in R with a 10 °C r...
متن کاملNo evidence that elevated CO2 gives tropical lianas an advantage over tropical trees.
Recent studies indicate that lianas are increasing in size and abundance relative to trees in neotropical forests. As a result, forest dynamics and carbon balance may be altered through liana-induced suppression of tree growth and increases in tree mortality. Increasing atmospheric CO2 is hypothesized to be responsible for the increase in neotropical lianas, yet no study has directly compared t...
متن کاملLianas Have a Greater Competitive Effect Than Trees of Similar Biomass on Tropical Canopy Trees
Lianas (woody vines) reduce growth and survival of host trees in both temperate and tropical forests; however, the relative strength of liana-tree competition in comparison to tree-tree competition remains unexplored. When controlling for biomass, lianas may have greater competitive effects than trees because the unique morphology of lianas allows them to reach the forest canopy at relatively s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Global change biology
دوره 20 9 شماره
صفحات -
تاریخ انتشار 2014